56 research outputs found

    Estimating Example Difficulty using Variance of Gradients

    Full text link
    In machine learning, a question of great interest is understanding what examples are challenging for a model to classify. Identifying atypical examples helps inform safe deployment of models, isolates examples that require further human inspection, and provides interpretability into model behavior. In this work, we propose Variance of Gradients (VOG) as a proxy metric for detecting outliers in the data distribution. We provide quantitative and qualitative support that VOG is a meaningful way to rank data by difficulty and to surface a tractable subset of the most challenging examples for human-in-the-loop auditing. Data points with high VOG scores are more difficult for the model to classify and over-index on examples that require memorization.Comment: Accepted to Workshop on Human Interpretability in Machine Learning (WHI), ICML, 202

    Intriguing generalization and simplicity of adversarially trained neural networks

    Full text link
    Adversarial training has been the topic of dozens of studies and a leading method for defending against adversarial attacks. Yet, it remains unknown (a) how adversarially-trained classifiers (a.k.a "robust" classifiers) generalize to new types of out-of-distribution examples; and (b) what hidden representations were learned by robust networks. In this paper, we perform a thorough, systematic study to answer these two questions on AlexNet, GoogLeNet, and ResNet-50 trained on ImageNet. While robust models often perform on-par or worse than standard models on unseen distorted, texture-preserving images (e.g. blurred), they are consistently more accurate on texture-less images (i.e. silhouettes and stylized). That is, robust models rely heavily on shapes, in stark contrast to the strong texture bias in standard ImageNet classifiers (Geirhos et al. 2018). Remarkably, adversarial training causes three significant shifts in the functions of hidden neurons. That is, each convolutional neuron often changes to (1) detect pixel-wise smoother patterns; (2) detect more lower-level features i.e. textures and colors (instead of objects); and (3) be simpler in terms of complexity i.e. detecting more limited sets of concepts

    Towards a Unified Framework for Fair and Stable Graph Representation Learning

    Full text link
    As the representations output by Graph Neural Networks (GNNs) are increasingly employed in real-world applications, it becomes important to ensure that these representations are fair and stable. In this work, we establish a key connection between counterfactual fairness and stability and leverage it to propose a novel framework, NIFTY (uNIfying Fairness and stabiliTY), which can be used with any GNN to learn fair and stable representations. We introduce a novel objective function that simultaneously accounts for fairness and stability and develop a layer-wise weight normalization using the Lipschitz constant to enhance neural message passing in GNNs. In doing so, we enforce fairness and stability both in the objective function as well as in the GNN architecture. Further, we show theoretically that our layer-wise weight normalization promotes counterfactual fairness and stability in the resulting representations. We introduce three new graph datasets comprising of high-stakes decisions in criminal justice and financial lending domains. Extensive experimentation with the above datasets demonstrates the efficacy of our framework.Comment: Accepted to UAI'2
    • …
    corecore